Seguir
Pieter-Jan Kindermans
Pieter-Jan Kindermans
Staff Research Scientist, Google Deepmind
Dirección de correo verificada de google.com
Título
Citado por
Citado por
Año
Schnet–a deep learning architecture for molecules and materials
KT Schütt, HE Sauceda, PJ Kindermans, A Tkatchenko, KR Müller
The Journal of Chemical Physics 148 (24), 2018
19682018
Schnet: A continuous-filter convolutional neural network for modeling quantum interactions
K Schütt, PJ Kindermans, HE Sauceda Felix, S Chmiela, A Tkatchenko, ...
Advances in neural information processing systems 30, 2017
13732017
Don't Decay the Learning Rate, Increase the Batch Size
SL Smith, PJ Kindermans, C Ying, QV Le
ICLR 2018, 2018
13072018
Understanding and simplifying one-shot architecture search
GM Bender, P Kindermans, B Zoph, V Vasudevan, Q Le
International Conference on Machine Learning (ICML) 2018, 2018
8922018
A benchmark for interpretability methods in deep neural networks
S Hooker, D Erhan, PJ Kindermans, B Kim
Advances in neural information processing systems 32, 2019
873*2019
The (un) reliability of saliency methods
PJ Kindermans, S Hooker, J Adebayo, M Alber, KT Schütt, S Dähne, ...
Explainable AI: Interpreting, explaining and visualizing deep learning, 267-280, 2019
8022019
Deep dynamic neural networks for multimodal gesture segmentation and recognition
D Wu, L Pigou, PJ Kindermans, NDH Le, L Shao, J Dambre, JM Odobez
IEEE transactions on pattern analysis and machine intelligence 38 (8), 1583-1597, 2016
5882016
Sign language recognition using convolutional neural networks
L Pigou, S Dieleman, PJ Kindermans, B Schrauwen
Computer Vision-ECCV 2014 Workshops: Zurich, Switzerland, September 6-7 and …, 2015
5782015
Learning how to explain neural networks: PatternNet and PatternAttribution
PJ Kindermans, KT Schuett, M Alber, KR Müller, D Erhan, B Kim, ...
ICLR 2018, 2018
4602018
iNNvestigate neural networks!
M Alber, S Lapuschkin, P Seegerer, M Hägele, KT Schütt, G Montavon, ...
Journal of machine learning research 20 (93), 1-8, 2019
4392019
Phenaki: Variable length video generation from open domain textual descriptions
R Villegas, M Babaeizadeh, PJ Kindermans, H Moraldo, H Zhang, ...
International Conference on Learning Representations, 2022
3432022
Bignas: Scaling up neural architecture search with big single-stage models
J Yu, P Jin, H Liu, G Bender, PJ Kindermans, M Tan, T Huang, X Song, ...
ECCV, 2020
3372020
Neural predictor for neural architecture search
W Wen, H Liu, H Li, Y Chen, G Bender, PJ Kindermans
ECCV, 2020
2292020
Mobiledets: Searching for object detection architectures for mobile accelerators
Y Xiong, H Liu, S Gupta, B Akin, G Bender, Y Wang, PJ Kindermans, ...
Proceedings of the IEEE/CVF conference on computer vision and pattern …, 2021
1692021
Can weight sharing outperform random architecture search? an investigation with tunas
G Bender, H Liu, B Chen, G Chu, S Cheng, PJ Kindermans, QV Le
Proceedings of the IEEE/CVF conference on computer vision and pattern …, 2020
1602020
Investigating the influence of noise and distractors on the interpretation of neural networks
PJ Kindermans, K Schütt, KR Müller, S Dähne
arXiv preprint arXiv:1611.07270, 2016
1512016
Integrating dynamic stopping, transfer learning and language models in an adaptive zero-training ERP speller
PJ Kindermans, M Tangermann, KR Müller, B Schrauwen
Journal of neural engineering 11 (3), 035005, 2014
1222014
Performance measurement for brain–computer or brain–machine interfaces: a tutorial
DE Thompson, LR Quitadamo, L Mainardi, S Gao, PJ Kindermans, ...
Journal of neural engineering 11 (3), 035001, 2014
1072014
True zero-training brain-computer interfacing–an online study
PJ Kindermans, M Schreuder, B Schrauwen, KR Müller, M Tangermann
PloS one 9 (7), e102504, 2014
992014
A bayesian model for exploiting application constraints to enable unsupervised training of a P300-based BCI
PJ Kindermans, D Verstraeten, B Schrauwen
PloS one 7 (4), e33758, 2012
922012
El sistema no puede realizar la operación en estos momentos. Inténtalo de nuevo más tarde.
Artículos 1–20