Follow
Xu Liu
Title
Cited by
Cited by
Year
A Survey on Federated Learning Systems: Vision, Hype and Reality for Data Privacy and Protection
Q Li, Z Wen, Z Wu, S Hu, N Wang, Y Li, X Liu, B He
IEEE Transactions on Knowledge and Data Engineering (TKDE), 2021
12562021
When Do Contrastive Learning Signals Help Spatio-Temporal Graph Forecasting?
X Liu, Y Liang, C Huang, Y Zheng, B Hooi, R Zimmermann
SIGSPATIAL 2022, 2022
79*2022
LSTM Multi-Modal UNet for Brain Tumor Segmentation
F Xu, H Ma, J Sun, R Wu, X Liu, Y Kong
ICIVC 2019, 2019
772019
LargeST: A Benchmark Dataset for Large-Scale Traffic Forecasting
X Liu, Y Xia, Y Liang, J Hu, Y Wang, L Bai, C Huang, Z Liu, B Hooi, ...
NeurIPS 2023, 2023
652023
The OARF Benchmark Suite: Characterization and Implications for Federated Learning Systems
S Hu, Y Li, X Liu, Q Li, Z Wu, B He
ACM Transactions on Intelligent Systems and Technology (TIST), 2022
602022
UniTime: A Language-Empowered Unified Model for Cross-Domain Time Series Forecasting
X Liu, J Hu, Y Li, S Diao, Y Liang, B Hooi, R Zimmermann
WWW 2024, 2024
502024
Deciphering Spatio-Temporal Graph Forecasting: A Causal Lens and Treatment
Y Xia, Y Liang, H Wen, X Liu, K Wang, Z Zhou, R Zimmermann
NeurIPS 2023, 2023
402023
TrajFormer: Efficient Trajectory Classification with Transformers
Y Liang, K Ouyang, Y Wang, X Liu, H Chen, J Zhang, Y Zheng, ...
CIKM 2022, 2022
372022
Reinventing Node-centric Traffic Forecasting for Improved Accuracy and Efficiency
X Liu, Y Liang, C Huang, H Hu, Y Cao, B Hooi, R Zimmermann
ECML-PKDD 2024, 2024
22*2024
Deep Active Learning for Computer Vision: Past and Future
R Takezoe, X Liu, S Mao, MT Chen, Z Feng, S Zhang, X Wang
APSIPA Transactions on Signal and Information Processing, 2023
182023
LLMs for Relational Reasoning: How Far are We?
Z Li, Y Cao, X Xu, J Jiang, X Liu, YS Teo, S Lin, Y Liu
ICSE LLM4Code Workshop 2024, 2024
152024
OD Morphing: Balancing Simplicity with Faithfulness for OD Bundling
Y Lyu, X Liu, H Chen, A Mangal, K Liu, C Chen, B Lim
IEEE Transactions on Visualization and Computer Graphics (TVCG), 2019
142019
Towards unifying diffusion models for probabilistic spatio-temporal graph learning
J Hu, X Liu, Z Fan, Y Liang, R Zimmermann
SIGSPATIAL 2024, 2024
72024
Time-FFM: Towards LM-Empowered Federated Foundation Model for Time Series Forecasting
Q Liu, X Liu, C Liu, Q Wen, Y Liang
NeurIPS 2024, 2024
32024
A Reflective LLM-based Agent to Guide Zero-shot Cryptocurrency Trading
Y Li, B Luo, Q Wang, N Chen, X Liu, B He
EMNLP 2024, 2024
22024
Low-rank Adaptation for Spatio-Temporal Forecasting
W Ruan, W Chen, X Dang, J Zhou, W Li, X Liu, Y Liang
arXiv preprint arXiv:2404.07919, 2024
22024
Improving Neural Logic Machines via Failure Reflection
Z Li, Y Cao, Y Zheng, X Liu, B Wu, T Li, X Xu, J Jiang, YS Teo, SW Lin, ...
Forty-first International Conference on Machine Learning, 2024
12024
Prompt-Enhanced Spatio-Temporal Graph Transfer Learning
J Hu, X Liu, Z Fan, Y Yin, S Xiang, S Ramasamy, R Zimmermann
CIKM 2024, 2024
12024
GIFT-Eval: A Benchmark For General Time Series Forecasting Model Evaluation
T Aksu, G Woo, J Liu, X Liu, C Liu, S Savarese, C Xiong, D Sahoo
arXiv preprint arXiv:2410.10393, 2024
2024
Moirai-MoE: Empowering Time Series Foundation Models with Sparse Mixture of Experts
X Liu, J Liu, G Woo, T Aksu, Y Liang, R Zimmermann, C Liu, S Savarese, ...
arXiv preprint arXiv:2410.10469, 2024
2024
The system can't perform the operation now. Try again later.
Articles 1–20