Can machine learning identify the next high-temperature superconductor? Examining extrapolation performance for materials discovery B Meredig, E Antono, C Church, M Hutchinson, J Ling, S Paradiso, ... Molecular Systems Design & Engineering 3 (5), 819-825, 2018 | 264 | 2018 |
LIBXSMM: accelerating small matrix multiplications by runtime code generation A Heinecke, G Henry, M Hutchinson, H Pabst SC'16: Proceedings of the International Conference for High Performance …, 2016 | 231 | 2016 |
High-dimensional materials and process optimization using data-driven experimental design with well-calibrated uncertainty estimates J Ling, M Hutchinson, E Antono, S Paradiso, B Meredig Integrating Materials and Manufacturing Innovation 6, 207-217, 2017 | 217 | 2017 |
VASP on a GPU: application to exact-exchange calculations of the stability of elemental boron M Hutchinson, M Widom Arxiv preprint arXiv:1111.0716, 2011 | 167 | 2011 |
Overcoming data scarcity with transfer learning ML Hutchinson, E Antono, BM Gibbons, S Paradiso, J Ling, B Meredig arXiv preprint arXiv:1711.05099, 2017 | 128 | 2017 |
On the strong scaling of the spectral element solver Nek5000 on petascale systems N Offermans, O Marin, M Schanen, J Gong, P Fischer, P Schlatter, ... Proceedings of the Exascale Applications and Software Conference 2016, 1-10, 2016 | 102 | 2016 |
Building data-driven models with microstructural images: Generalization and interpretability J Ling, M Hutchinson, E Antono, B DeCost, EA Holm, B Meredig Materials Discovery 10, 19-28, 2017 | 94 | 2017 |
Machine learning for alloy composition and process optimization J Ling, E Antono, S Bajaj, S Paradiso, M Hutchinson, B Meredig, ... Turbo Expo: Power for Land, Sea, and Air 51128, V006T24A005, 2018 | 33 | 2018 |
Quantifying uncertainty in high-throughput density functional theory: A comparison of AFLOW, Materials Project, and OQMD VI Hegde, CKH Borg, Z Del Rosario, Y Kim, M Hutchinson, E Antono, ... Physical Review Materials 7 (5), 053805, 2023 | 30* | 2023 |
Efficiency of high order spectral element methods on petascale architectures M Hutchinson, A Heinecke, H Pabst, G Henry, M Parsani, D Keyes International Conference on High Performance Computing, 449-466, 2016 | 29 | 2016 |
Using machine learning to explore formulations recipes with new ingredients ML Hutchinson, ES Kim, RM Latture, SP Paradiso, JB Ling US Patent 10,984,145, 2021 | 14 | 2021 |
Performance study of sustained petascale direct numerical simulation on Cray XC40 systems B Hadri, M Parsani, M Hutchinson, A Heinecke, L Dalcin, D Keyes Concurrency and Computation: Practice and Experience 32 (20), e5725, 2020 | 13 | 2020 |
Enumeration of octagonal tilings M Hutchinson, M Widom Theoretical Computer Science, 40-50, 2015 | 9 | 2015 |
Solving industrial materials problems by using machine learning across diverse computational and experimental data M Hutchinson, E Antono, B Gibbons, S Paradiso, J Ling, B Meredig APS March Meeting Abstracts 2018, K32. 002, 2018 | 4 | 2018 |
Multivariate prediction intervals for bagged models B Folie, M Hutchinson Machine Learning: Science and Technology 4 (1), 015022, 2023 | 3 | 2023 |
Plane‐Wave Density Functional Theory M Hutchinson, P Fleurat‐Lessard, A Anciaux‐Sedrakian, D Stosic, ... Electronic Structure Calculations on Graphics Processing Units: From Quantum …, 2016 | 3 | 2016 |
Direct numerical simulation of single mode three-dimensional Rayleigh-Taylor experiments M Hutchinson arXiv preprint arXiv:1511.07254, 2015 | 2 | 2015 |
Performance Study of Sustained Petascale Direct Numerical Simulation on Cray XC40 Systems (Trinity, Shaheen2 and Cori) B Hadri, M Parsani, M Hutchinson, A Heinecke, L Dalcin, DE Keyes Cray User Group, 2019 | 1 | 2019 |
The Shirley reduced basis: a reduced order model for plane-wave DFT M Hutchinson, D Prendergast arXiv preprint arXiv:1402.7366, 2014 | 1 | 2014 |
Machine Learning Techniques for Predicting Properties of Formulations M Hutchinson, E Antono, S Paradiso The Digital Transformation of Product Formulation, 139-176, 2025 | | 2025 |