Characteristic classes associated to Q-bundles A Kotov, T Strobl International Journal of Geometric Methods in Modern Physics 12 (01), 1550006, 2015 | 102 | 2015 |

Lie algebroid morphisms, Poisson Sigma Models, and off-shell closed gauge symmetries M Bojowald, A Kotov, T Strobl Journal of Geometry and Physics 54 (4), 400-426, 2005 | 92 | 2005 |

Dirac sigma models A Kotov, P Schaller, T Strobl Communications in mathematical physics 260, 455-480, 2005 | 78 | 2005 |

Generalizing geometry-algebroids and sigma models A Kotov, T Strobl arXiv preprint arXiv:1004.0632, 2010 | 60 | 2010 |

The embedding tensor, Leibniz–Loday algebras, and their higher gauge theories A Kotov, T Strobl Communications in Mathematical Physics 376 (1), 235-258, 2020 | 50 | 2020 |

Lie algebroids, gauge theories, and compatible geometrical structures A Kotov, T Strobl Reviews in Mathematical Physics 31 (04), 1950015, 2019 | 44* | 2019 |

Gauging without initial symmetry A Kotov, T Strobl Journal of Geometry and Physics 99, 184-189, 2016 | 36 | 2016 |

Gauge PDE and AKSZ‐type Sigma Models: LMS/EPSRC Durham Symposium on Higher Structures in M‐Theory M Grigoriev, A Kotov Fortschritte der Physik 67 (8-9), 1910007, 2019 | 24 | 2019 |

Curving Yang-Mills-Higgs gauge theories A Kotov, T Strobl Physical Review D 92 (8), 085032, 2015 | 23 | 2015 |

2d gauge theories and generalized geometry A Kotov, V Salnikov, T Strobl Journal of High Energy Physics 2014 (8), 1-22, 2014 | 20 | 2014 |

Presymplectic AKSZ formulation of Einstein gravity M Grigoriev, A Kotov Journal of High Energy Physics 2021 (9), 1-24, 2021 | 16 | 2021 |

Differential graded Lie groups and their differential graded Lie algebras B Jubin, A Kotov, N Poncin, V Salnikov Transformation Groups 27 (2), 497-523, 2022 | 15 | 2022 |

Lie superalgebras of differential operators J Grabowski, A Kotov, N Poncin J. Lie Theory 21 (3), 35–54, 2013 | 15 | 2013 |

The Lie superalgebra of a supermanifold J Grabowski, A Kotov, N Poncin J. Lie Theory 20 (4), 739-749, 2010 | 14* | 2010 |

Generalizing geometry-Algebroids and sigma models, in “Handbook on Pseudo-Riemannian Geometry and Supersymmetry,” ed A Kotov, T Strobl V. Cortes [1004.0632 [hep-th]], 2010 | 13 | 2010 |

The category of Z− graded manifolds: What happens if you do not stay positive A Kotov, V Salnikov Differential Geometry and its Applications 93, 102109, 2024 | 10 | 2024 |

Geometric structures encoded in the Lie structure of an Atiyah algebroid J Grabowski, A Kotov, N Poncin Transformation Groups 16, 137-160, 2011 | 9 | 2011 |

On the space of super maps between smooth supermanifolds G Bonavolonta, A Kotov arXiv preprint arXiv:1304.0394, 2013 | 8 | 2013 |

Normal forms of Z-graded Q-manifolds A Kotov, C Laurent-Gengoux, V Salnikov Journal of Geometry and Physics 191, 104908, 2023 | 6 | 2023 |

Local BRST cohomology for AKSZ field theories: A global approach G Bonavolontà, A Kotov Mathematical Aspects of Quantum Field Theories, 325-341, 2015 | 6 | 2015 |